Induction of Neural Progenitor-Like Cells from Human Fibroblasts via a Genetic Material-Free Approach
نویسندگان
چکیده
BACKGROUND A number of studies generated induced neural progenitor cells (iNPCs) from human fibroblasts by viral delivering defined transcription factors. However, the potential risks associated with gene delivery systems have limited their clinical use. We propose it would be safer to induce neural progenitor-like cells from human adult fibroblasts via a direct non-genetic alternative approach. METHODOLOGY/PRINCIPAL FINDINGS Here, we have reported that seven rounds of TAT-SOX2 protein transduction in a defined chemical cocktail under a 3D sphere culture gradually morphed fibroblasts into neuroepithelial-like colonies. We were able to expand these cells for up to 20 passages. These cells could give rise to cells that expressed neurons and glia cell markers both in vitro and in vivo. CONCLUSIONS/SIGNIFICANCE These results show that our approach is beneficial for the genetic material-free generation of iNPCs from human fibroblasts where small chemical molecules can provide a valuable, viable strategy to boost and improve induction in a 3D sphere culture.
منابع مشابه
Brief Azacytidine Step Allows The Conversion of Suspension Human Fibroblasts into Neural Progenitor-Like Cells
In recent years transdifferentiation technology has enabled direct conversion of human fibroblasts to become a valuable, abundant and accessible cell source for patient-specific induced cell generation in biomedical research. The majority of transdifferentiation approaches rely upon viral gene delivery which due to random integration with the host genome can cause genome instability and tumorig...
متن کاملA New Two Step Induction Protocol for Neural Differentiation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells
Background: In this study, we examined a new two step induction protocol for improving the differentiation of human umbilical cord blood-derived mesenchymal stem cells into neural progenitor cells. Materials and Methods: Human umbilical cord blood-derived mesenchymal stem cells were first cultured in Dulbecco’s modified eagle medium supplemented with 10% fetal bovine serum in a humidified incu...
متن کاملDehydroepiandroesteron increased proliferation of neural progenitor cells derived from p19 embryonal carcinoma stem cells.
Introduction: The p19 line of embryonal carcinoma cells develops into neurons, astroglia and fibroblasts after aggregation and exposure to retinoic acid (RA). Dehydroepiandroesteron (DHEA) is a neurosteroid, can increase proliferation of human neural stem cell (NSC) and positively regulated the number of neurons produced. This study was initiated to assess the effect of DHEA on neural progenito...
متن کاملI-54: New Models for Human and Mouse Genetic
The possibility to reprogram somatic human cells will greatly and deeply change genetic approach and allow the development of new tools to study genetics diseases. Indeed, our ability to study human genetic diseases suffers from the lack of valid in vitro models. The latter should (i) be originating from human primary cells, (ii) be able to self-renew for a long time and (iii) be able to differ...
متن کاملThe Proliferation Study of hiPS Cell-Derived Neuronal Progenitors on Poly-Caprolactone Scaffold
Introduction: The native inability of nervous system to regenerate, encourage researchers to consider neural tissue engineering as a potential treatment for spinal cord injuries. Considering the suitable characteristics of induced pluripotent stem cells (iPSCs) for tissue regeneration applications, in this study we investigated the adhesion, viability and proliferation of neural progenitors (de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015